5.1 Multiplication of Exponents

Need To Know

- Recall exponents
- The idea of exponent properties
- Apply exponent properties

Exponents

Exponents mean repeated multiplication.

$$
\begin{array}{cc}
4^{3} & \left(-\frac{2}{3}\right)^{2} \\
-2^{4} & (-2)^{4}
\end{array}
$$

Exponent Properties - Multiply

Use the pattern to discover the property.

Simplify:
$52 \cdot 5^{6}$
$x^{3} \cdot x^{7}$

Exponent Properties

1) \qquad

Exponent -Division of Same Base

Use the pattern to discover the property.
Simplify: Exponent Properties
$\frac{3^{7}}{3^{4}}$

1) $a^{m} \cdot a^{n}=a^{m+n}$
2) \qquad
$\frac{x^{11}}{x^{5}}$

Exponent - Zero Power

Look at the pattern and draw a conclusion.

3^{4}	
3^{3}	
3^{2}	
3^{1}	

Exponent Properties

1) $a^{m} \cdot a^{n}=a^{m+n}$
2) $\frac{a^{m}}{a^{n}}=a^{m-n}$
3) \qquad

Exponent - Power on Power

Use the pattern to discover the property.

Simplify:
$\left(3^{2}\right)^{4}$
$\left(x^{3}\right)^{5}$

Exponent Properties

1) $a^{m} \cdot a^{n}=a^{m+n}$
2) $\frac{a^{m}}{a^{n}}=a^{m-n}$
3) $a^{0}=1$, for all a except 0 .
4) \qquad

Exponent - Power on Product

Use the pattern to discover the property.

Simplify:
$(2 b)^{3}$
$(x y)^{5}$

Exponent Properties

1) $a^{r} \cdot a^{s}=a^{r+s}$
2) $\frac{a^{r}}{a^{s}}=a^{r-s}$
3) $a^{0}=1$, for all a except 0 .
4) $\left(a^{m}\right)^{n}=a^{m n}$
5) \qquad

Exponent - Power on Fractions

Use the pattern to discover the property.
Exponent Properties
Simplify:

1) $a^{m} \cdot a^{n}=a^{m+n}$
$\left(\frac{2}{3}\right)^{4}$
2) $\frac{a^{r}}{a^{s}}=a^{r-s}$
3) $a^{0}=1$, for all a except 0 .
$\left(\frac{a}{z}\right)^{2}$
4) $\left(a^{m}\right)^{n}=a^{m n}$
5) $(a b)^{n}=a^{n} b^{n}$
6)

Exponent Practice - Simplify each

1. $\mathrm{n}^{3} \cdot \mathrm{n}^{20}$
2. $(2 t)^{8}(2 t)^{17}$
3. $\left(a^{3} b\right)(a b)^{4}$
4. \underline{x}^{7}

X
5. $\frac{a^{10} b^{12}}{a^{6} b^{0}}$
6. $(-3 x)^{3}$
7. $\left(a^{4} b^{6}\right)\left(a^{2} b\right)^{5}$
8. $\left(\frac{x^{3} y^{6}}{y^{4} z}\right)^{5}$

5.2 Negative Exponents

Need To Know

- Review Exponents Properties
- Idea of Negative Exponents
- Negative Exponent Properties and Calculation
- What is Scientific Notation?
- How to write numbers in Scientific Notation
- How to do calculations in Scientific Notation

Review Exponent Properties

Recall:

The Product Rule	$\mathrm{a}^{m} \cdot \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}+\mathrm{n}}$
The Quotient Rule	$\frac{\boldsymbol{a}^{m}}{\boldsymbol{a}^{n}}=\boldsymbol{a}^{m-n}$
The Power Rule	$\left(\mathrm{a}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{a}^{\mathrm{mn}}$
Raising a Product to a power	$(\mathrm{ab})^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}$
Raising a quotient to a power	$\left(\frac{\boldsymbol{a}}{\boldsymbol{b}}\right)^{n}=\frac{\boldsymbol{a}^{n}}{\boldsymbol{b}^{n}}$

Idea of Negative Exponents

Look a the pattern and draw a conclusion.

3^{4}	
3^{3}	
3^{2}	
3^{1}	

Definitions:
for all real numbers $(a \neq 0)$,

Definition:
for $a \neq 0$ and n is a positive,

Practice - Simplify Each

$$
\begin{array}{ll}
5^{-3} & \left(\frac{2}{5}\right)^{-1} \\
(-2)^{-2} & \frac{y^{-3}}{x^{-5}} \\
5 x^{-4} & \frac{a^{-3}}{z^{5}}
\end{array}
$$

Exponent Properties

Exponent of 1	$a^{1}=a$	The Product Rule	$a^{m} \cdot a^{n}=a^{m+n}$
Exponent of 0	$a^{0}=1$	The Quotient Rule	$\frac{a^{m}}{a^{n}}=a^{m-n}$
Negative Exponents	$a^{-n}=\frac{1}{a^{n}}$	The Power Rule	$\left(a^{m}\right)^{n}=a^{m n}$
Think - RECIPROCAL	Raising a Product to a power	$(a b)^{n}=a^{n} b^{n}$	
Think- RECIPROCAL	Raising a quotient to a power	$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$	

1. $\frac{11^{7}}{11^{9}}$
2. $x^{-6} \cdot x^{2}$
3. $\frac{3^{-4}}{3^{-6}}$
4. $\left(2 x^{4}\right)^{-2}$

Practice - Simplify

5. $\frac{\left(2 x^{3}\right)^{2}}{x^{4}}$
6. $\left(\frac{y^{-8}}{y^{-3}}\right)^{2}$
7. $\frac{x^{-6}}{\left(x^{3}\right)^{4}}$
8. $\frac{a^{5}\left(a^{-2}\right)^{4}}{\left(a^{-3}\right)^{2}}$

Scientific Notation

Scientific Notation is a way to write big or small numbers in a compact and simple way.
where \mathbf{N} is a decimal at least one and less than $10(1 \leq N<10)$ and \mathbf{m} is an integer exponent.

Examples of scientific notation

1) The national debt: $\$ 16,749,209,149,306.58 \approx$ \qquad http://www.brillig.com/debt clock/
2) The mass of a hydrogen atom: 0.0000000000000000000000016738 grams $=$ \qquad

Scientific Notation

Converting: Scientific notation into expanded form.
$3.8497 \times 10^{1}=3.8497 \times 10$
$3.8497 \times 10^{2}=3.8497 \times 100$
$3.8497 \times 10^{5}=3.8497 \times 100000$
$3.8497 \times 10^{-1}=3.8497 \times 0.1$
$3.8497 \times 10^{-3}=3.8497 \times 0.001$
9.2×10^{-5}
7.083×10^{7}

Scientific Notation

Converting: Expanded form into scientific notation.

$$
35,900,000 \quad 0.000029
$$

We use the exponent properties to multiply and divide number in scientific notation.

Examples:
$\frac{8 \times 10^{12}}{4 \times 10^{-3}}$
$\left(7.8 \times 10^{7}\right)\left(8.4 \times 10^{23}\right)$

5.3 Polynomials

Need To Know

- Recall like terms
- Some new vocabulary
- Like Terms and polynomials
- Evaluate polynomials

Vocabulary

RECALL - Definitions
A term is a \qquad made of numbers \& variables often combined with parentheses, multiplication or division.

Like terms are terms with the \qquad .

A polynomial is a finite sum of terms.

Examples: Monomials	Binomials	Trinomials	Other

New Vocabulary

The degree of a term is \qquad factors in the term. (If there is only one variable, then the degree is the exponent.)

The degree of a polynomial equals \qquad
where the leading term is the term in the expression with the highest degree.

The numerical coefficient is the
\qquad factor which multiplies the term.
$12 w^{5}-9+4 w^{7}+\frac{1}{2} w-w^{3}$

Terms	Coefficients	Degree of Term	Leading Term	Degree of Polynomial

Polynomials Practice

When $x=-3$	Recall

find the value of
$2 x^{2}-x+3$
Combine like terms:
$7 x^{2}+x+x-5 x^{2}$
$9 b^{5}+3 b^{2}-2 b^{5}-3 b^{2}$
$8 x^{5}-x^{4}+2 x^{5}+7 x^{4}-4 x^{4}-x^{6}$

Application with Polynomials

The electricity consumption in a city can be estimated by $E=0.028 t+1.17$ where E is electricity consumption in million of gigawatt hours and t is years since 2000.
Find the consumption in 2013.

The circumference of a circle of radius r is given by the polynomial $\mathrm{C}=2 \pi$ r where π is an irrational number. Use 3.14 to approximate π. Find the circumference if the radius is 6 cm .

Need To Know

- Adding polynomials
- Opposites of a polynomial
- Subtracting polynomials
- Polynomials problems solving

Adding Polynomials

$\left(x^{2}+4 x-9\right)+(7 x-3)$
$\left(\frac{4}{5} x^{9}+\frac{1}{2} x^{5}-3 x^{2}+7\right)+\left(-\frac{3}{5} x^{9}+\frac{3}{4} x^{5}+2 x-5\right)$
Add:
$2 x^{4}+3 x^{3}+4 x$ $5 x^{3}-6 x-3$

The Opposite of a Polynomial

Write the opposite of $\left(2 x^{2}+3 x-4\right)$ in two ways

Simplify:

$$
\begin{aligned}
& -\left(5 x^{2}-6 x+3\right) \\
& -\left(7 x^{9}+11 x^{5}-\frac{3}{4} x-5\right)
\end{aligned}
$$

Subtracting Polynomials

Subtract:
$(9 x+7)-(5 x-3)$
$\left(2 x^{2}+3 x+4\right)-\left(5 x^{2}-6 x+3\right)$
Subtract:
$x^{2}+5 x-3$
$4 x^{2}-4 x-5$

Practice

Simplify:
$\left(2 y^{2}-7 y-8\right)-\left(6 y^{2}+6 y-8\right)+\left(4 y^{2}-2 y+3\right)$

Polynomial Problem Solving

Find the perimeter Find shaded area

5.5 Multiplication of Polynomials

Need To Know

- Multiply a monomial times a monomial
- Multiply a monomial times a polynomial
- Multiply a polynomial times a polynomial

Monomial times Monomial

Recall Multiplication:
$\left(-x^{3}\right)\left(x^{4}\right)$
$\left(-4 y^{4}\right)\left(6 y^{2}\right)\left(-3 y^{2}\right)$

Exponent Properties

1) \qquad
2) \qquad
3) \qquad

Monomial times Polynomial

Recall:
$a(b+c)=$

Multiply:
$2 x\left(4 x^{2}+5 x-3\right)=$

Exponent Properties

1) $a^{m} \cdot a^{n}=a^{m+n}$
2) $\left(a^{m}\right)^{n}=a^{m n}$
3) $(a b)^{m}=a^{m} b^{m}$

Polynomial times Polynomial

Multiply:
Recall Column Multiply
$(x+2)\left(x^{2}-3 x+4\right)$

Polynomial times Polynomial

Multiply: colms Multiply:
$(z-4)(z+5) \quad\left(2 x^{2}+x+1\right)\left(x^{2}-4 x+3\right)$
5.6 Binomial Multiplication \& Short Cuts

Need To Know

- Binomials times Binomials - Short Cut
- Product of a Sum and a Difference Binomial
- Squares of Binomials

Binomial times Binomial

Multiply: Multiply:
$x+7$
$\underline{x-5}$

Short Cut: FOIL

Multiply:

F- \qquad
0 - \qquad
I- \qquad
L- \qquad

Multiply by distributive law:
$(y+6)(y-3)$

Multiply:

F - first terms
O - outer terms
I - inner terms
L - last terms
$(x+2 y)(a+7 b)$

Binomial times Binomial

Multiply
$\left(x^{2}-3\right)(x-6)$
$\left(1+2 t^{2}\right)\left(1-3 t^{3}\right)$

Find the area:

Product of a Sum and Difference

Simplify:
$(w+3)(w-3)$
$(2 x-5)(2 x+5)$
$(3 n+6 m)(3 n-6 m)$

Formula:
$(A+B)(A-B)=$

Squares of Binomials

Simplify:
$(x+3)^{2}$

Multiply:
$(4 x-5)^{2}$
$(2 p-7 q)^{2}$

Formula:
$(A+B)^{2}=$ \qquad

Formula:
$(A-B)^{2}=$ \qquad

Squares of Binomials

Simplify:
$(x+6 y)^{2}$

Formulas to Know

1. $(A+B)(A-B)=A^{2}-B^{2}$
2. $(A+B)^{2}=A^{2}+2 A B+B^{2}$
3. $(A-B)^{2}=A^{2}-2 A B+B^{2}$
$\left(3 x^{4}+2\right)\left(3 x^{4}-2\right)$
$(4 n-7 b)^{2}$

- Evaluating a Polynomial
- Like Terms and Degree
- Addition and Subtraction of Polynomials
- Multiplication of Polynomials

Evaluating Polynomials

An amount of money P invested at a yearly rate r for t years will grow to an amount of A given by $A=P(1+r)^{t}$. What will you have from investing $\$ 1000$ at 6\% for 3 years?

New Vocabulary

The degree of a term is the number of variable factors in the term. The degree of a polynomial is the degree of the leading term, and the leading term is the term with the highest degree.

$$
6-x y+3 x^{2} y^{2}-2 x^{3} y z^{2}+y^{5}
$$

Terms	Coefficients	Degree of Term	Leading Term	Degree of Polynomial

Add and Subtract Polynomials

Simplify:
$\left(2 x^{2}-3 x y+y^{2}\right)+\left(-4 x^{2}-6 x y-y^{2}\right)+\left(4 x^{2}+x y-y^{2}\right)$
$\left(a^{3}+b^{3}\right)-\left(-5 a^{3}+2 a^{2} b-a b^{2}+3 b^{3}\right)$

Multiplying Polynomials

Multiply:
$\left(5 c d+c^{2} d+6\right)\left(c d-d^{2}\right)$

FOILing Polynomials

Multiply:
$\left(m^{3} n+3\right)\left(2 m^{3} n-11\right)$
$(4 r+3 t)^{2}$
$\left(p^{3}-5 q\right)\left(p^{3}+5 q\right)$
end

5.8 Dividing a Polynomial

Need To Know

- Two ways to work division
- Recall the distributive property
- Divide a polynomial by a monomial
- Recall long division
- Divide a polynomial by a polynomial

The Distributive Property

Recall:
$a(b+c)=a b+a c$

Also:
$(b+c) a=$ \qquad

With a new twist:
$(\mathrm{b}+\mathrm{c}) \mathrm{a}=\square \quad \frac{\boldsymbol{b}+\boldsymbol{c}}{\boldsymbol{a}}=$

$$
\frac{\text { Polynomial }}{\text { mono }}=\frac{A+B+C}{D}=
$$

Divide a Polynomial by a Mono

$$
\left(5 x^{2}-10\right) \div 5 \quad \frac{8 x^{3}-12 x^{2}}{4 x}
$$

Divide a Polynomial by a Mono

$\left(9 x^{3} y^{2}-12 x^{2} y^{3}\right) \div(-9 x y) \quad \frac{21 a^{3} z^{2}-14 a^{2} z^{2}+7 a^{2} z^{3}}{7 a^{2} z}$

Recall Long Division

Steps for Division
$2 4 \longdiv { 8 5 8 0 }$

Polynomial Division		Steps for Division
		1. Guess
		2. Multiply
		4. 5. $\begin{aligned} & \text { Bring Down } \\ & \text { Repeat }\end{aligned}$
$x - 2 \longdiv { x ^ { 2 } - 5 x + 6 }$	$\left(8 x^{2}-6 x-5\right) \div(2 x-3)$	

Polynomial Division

$\frac{2 t^{3}-9 t^{2}+11 t-3}{2 t-3} \quad \frac{w^{3}+10}{w+2}$

Deciding on which way to DIVIDE

Next to each problem circle the correct way to divide it.

1. $\left(5 x^{2}-16 x\right) \div(5 x-1)$
a) Fraction
b) Long Division
2. $\left(20 t^{3}+5 t^{2}-15 t\right) \div(5 t)$
a) Fraction b) Long Division
3. $\left(36 a^{6}-27 a^{5}-45 a^{2}+9 a\right) \div(-9 a)$
a) Fraction
b) Long Division
4. $\frac{x^{4}-3 x^{2}+4 x-3}{x^{2}-5}$
a) Fraction b) Long Division
5. $\frac{4 x^{4} y-8 x^{6} y^{2}+12 x^{8} y^{6}}{4 x^{4} y}$
a) Fraction b) Long Division
