MATH 90 – CHAPTER 5

Need To Know

Recall exponents

- The idea of exponent properties
- Apply exponent properties

Exponents mean repeated multiplication.

Use the pattern to discover the property.

Simplify:Exponent Properties52·561)

x³·x⁷

•

Exponent – Division of Same Base

Use the pattern to discover the property.

Exponent Properties

Exponent – Zero Power

Look at the pattern and draw a conclusion.

Exponent Properties 1) $a^{m} \cdot a^{n} = a^{m+n}$ $2) \frac{a^m}{a^n} = a^{m-n}$ 3) ____

Use the pattern to discover the property.

Simplify:	Exponent Properties
(3 ²) ⁴	1) $a^{m} \cdot a^{n} = a^{m+n}$
(x ³) ⁵	2) $\frac{a^{m}}{a^{n}} = a^{m-n}$ 3) $a^{0} = 1$, for all a except 0. 4)

Exponent – Power on Product

Use the pattern to discover the property.

Simplify:Exponent Properties $(2b)^3$ 1) $a^r \cdot a^s = a^{r+s}$ $(2b)^3$ 2) $\frac{a^r}{a^s} = a^{r-s}$ $(xy)^5$ 3) $a^0 = 1$, for all a except 0. $(a^m)^n = a^{mn}$ 5)

Exponent – Power on Fractions

Use the pattern to	discover the property.
	Exponent Properties
Simplify:	1) a ^m ·a ⁿ = a ^{m+n}
$\left(\frac{2}{3}\right)^4$	2) $\frac{a^r}{a^s} = a^{r-s}$ 3) $a^0 = 1$, for all a except 0
$\left(a\right)^{2}$	4) $(a^m)^n = a^{mn}$
$\left(\frac{-}{z}\right)$	5) $(ab)^n = a^n b^n$
	6)

×

Need To Know

- Review Exponents Properties
- Idea of Negative Exponents
- Negative Exponent Properties and Calculation
- What is Scientific Notation?
- How to write numbers in Scientific Notation
- How to do calculations in Scientific Notation

Review Exponent Properties

Recall:

The Product Rule	$a^m \cdot a^n = a^{m+n}$
The Quotient Rule	$\frac{a^m}{a^n} = a^{m-n}$
The Power Rule	$(a^m)^n = a^{mn}$
Raising a Product to a power	$(ab)^n = a^n b^n$
Raising a quotient to a power	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Look a the pattern and draw a conclusion.

34	
3 ³	
3 ²	
31	

<u>Definitions</u>: for all real numbers ($a \neq 0$),

<u>Definition</u>: for $a \neq 0$ and *n* is a positive,

_	Fxponent	Properties
	слропси	порениез

Exponent of 1	a ¹ = a	The Product Rule	$a^m \cdot a^n = a^{m+n}$
Exponent of 0	a ⁰ = 1	The Quotient Rule	$\frac{a^m}{a^n} = a^{m-n}$
Negative Exponents	$a^{-n} = \frac{1}{a^n}$	The Power Rule	(a ^m) ⁿ = a ^{mn}
Think – RECIPROCAL		Raising a Product to a power	$(ab)^n = a^n b^n$
Think – RECIPROCAL		Raising a quotient to a power	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

2.
$$\frac{3^{-4}}{3^{-6}}$$
 4. $(2x^4)^{-2}$

5.
$$\frac{(2x^3)^2}{x^4}$$

6. $\frac{x^{-6}}{(x^3)^4}$
7. $\left(\frac{y^{-8}}{y^{-3}}\right)^2$
8. $\frac{a^5(a^{-2})^4}{(a^{-3})^2}$

Scientific Notation

<u>Scientific Notation</u> is a way to write big or small numbers in a compact and simple way.

where **N** is a decimal at least one and less than 10 ($1 \le N < 10$) and **m** is an integer exponent.

Examples of scientific notation

- The mass of a hydrogen atom:
 0.000000000000000000000016738 grams =

Scientific Notation

Converting: Scientific notation into expanded form.

- 3.8497 x 10¹ = 3.8497 x 10 3.8497 x 10² = 3.8497 x 100 3.8497 x 10⁵ = 3.8497 x 100000
- $3.8497 \times 10^{-1} = 3.8497 \times 0.1$
- $3.8497 \times 10^{-3} = 3.8497 \times 0.001$

9.2 x 10⁻⁵

7.083 x 10⁷

Scientific Notation

Converting: Expanded form into scientific notation. 35,900,000 0.000029

We use the exponent properties to multiply and divide number in scientific notation.

Examples:

8 x 10 ¹²	(7.8 x 10 ⁷)(8.4 x 10 ²³)
4 x 10 ⁻³	

- Recall like terms
- Some new vocabulary
- Like Terms and polynomials
- Evaluate polynomials

RECALL - Definitions

A <u>term</u> is a _____ made of numbers & variables often combined with parentheses, multiplication or division.

Like terms are terms with the _____

A **polynomial** is a finite sum of terms.

Examples:	Monomials	Binomials	Trinomials	Other	
-----------	-----------	-----------	------------	-------	--

The <u>degree of a term</u> is ______factors

in the term. (If there is only one variable, then the degree is the exponent.)

The degree of a polynomial equals _____

_____where the leading term is the term in the expression with the highest degree.

The **<u>numerical coefficient</u>** is the

______ factor which multiplies the term.

Comp	Complete the table for the polynomial			
$12w^{5}$ -	$12w^5 - 9 + 4w^7 + \frac{1}{2}w - w^3$			
Terms	Coefficients	Degree of Term	Leading Term	Degree of Polynomial

Polynomials Practice

When $x = -3$	Recall
find the value of $2x^2 - x + 3$	3x+ 6x
	Combine like terms:
	$7x^2 + x + x - 5x^2$
	$9b^5 + 3b^2 - 2b^5 - 3b^2$
	$8x^5 - x^4 + 2x^5 + 7x^4 - 4x^4 - x^6$

Application with Polynomials

The electricity consumption in a city can be estimated by E = 0.028t + 1.17 where E is electricity consumption in million of gigawatt hours and t is years since 2000. Find the consumption in 2013. The circumference of a circle of radius r is given by the polynomial $C = 2\pi r$ where π is an irrational number. Use 3.14 to approximate π . Find the circumference if the radius is 6 cm.

- Adding polynomials
- Opposites of a polynomial
- Subtracting polynomials
- Polynomials problems solving

Adding Polynomials

$$(x^{2} + 4x - 9) + (7x - 3)$$

 $\left(\frac{4}{5}x^{9} + \frac{1}{2}x^{5} - 3x^{2} + 7\right) + \left(-\frac{3}{5}x^{9} + \frac{3}{4}x^{5} + 2x - 5\right)$
Add:
 $2x^{4} + 3x^{3} + 4x$
 $5x^{3} - 6x - 3$

Write the opposite of $(2x^2 + 3x - 4)$ in two ways

Simplify:
- (
$$5x^2 - 6x + 3$$
)
- $\left(7x^9 + 11x^5 - \frac{3}{4}x - 5\right)$

Subtracting Polynomials

Subtract: (9x + 7) - (5x - 3) $(2x^{2} + 3x + 4) - (5x^{2} - 6x + 3)$ Subtract: $x^{2} + 5x - 3$ $4x^{2} - 4x - 5$

Simplify: $(2y^2 - 7y - 8) - (6y^2 + 6y - 8) + (4y^2 - 2y + 3)$

- Multiply a monomial times a monomial
- Multiply a monomial times a polynomial
- Multiply a polynomial times a polynomial

Recall Multiplication:	Exponent Properties
(-x ³)(x ⁴)	1)
	2)
(-4y ⁴)(6y ²)(-3y ²)	3)

Monomial	times	Polynomial
Пополна	unico	rorynonnar

Recall: a(b + c) =

<u>Ex</u> p	oonent Properties
1)	$a_m \cdot a_n = a_{m+n}$
2)	$(a^m)^n = a^{mn}$

3) $(ab)^m = a^m b^m$

Multiply: $2x(4x^2 + 5x - 3) =$

-	Pol	ynomial	times	Polynomial	

Multiply:	Recall Column Multiply
$(x + 2)(x^2 - 3x + 4)$	324
	<u>x 13</u>

Polynomial times Polynomial		
Multiply: columns	Multiply:	
(z – 4)(z + 5)	$(2x^2 + x + 1)(x^2 - 4x + 3)$	

- Binomials times Binomials Short Cut
- Product of a Sum and a Difference Binomial
- Squares of Binomials

Binon	nial times Bind	omial
Multiply:	Multiply:	Short Cut: FOIL
x + 7	(x + 7)(x - 5)	Multiply:
x – 5		F
		0 –
		I –
		L

Binomial times I	Binomial
Multiply by distributive law!	Short Cut: FOIL
(y + 6)(y - 3)	Multiply:
	F – first terms
	O – outer terms
	I – inner terms
(3x + 5)(x - 2)	L – last terms

(x + 2y)(a + 7b)

Product of a Sum and	Difference
----------------------	------------

Simplify: Formula: (w + 3)(w - 3) (A + B)(A - B) =

(2x - 5)(2x + 5)

(3n + 6m)(3n - 6m)

Squares	of Binomials
Simplify:	Formula:
(x + 3) ²	(A + B) ² =
Multiply:	Formula:
(4x – 5) ²	(A – B)² =
(2p – 7q) ²	

Simplify:	Formulas to Know
$(x \pm 6y)^2$	1. $(A+B)(A-B) = A^2 - B^2$
$(x + 0y)^2$	2. $(A + B)^2 = A^2 + 2AB + C^2$
	3. $(A - B)^2 = A^2 - 2AB + B^2$

(4n – 7b)²

end

- Evaluating a Polynomial
- Like Terms and Degree
- Addition and Subtraction of Polynomials
- Multiplication of Polynomials

An amount of money P invested at a yearly rate r for t years will grow to an amount of A given by $A = P(1 + r)^{t}$. What will you have from investing \$1000 at 6% for 3 years?

New Vocabulary

The **<u>degree of a term</u>** is the number of variable factors in the term. The <u>**degree of a polynomial**</u> is the degree of the leading term, and the <u>leading term</u> is the term with the highest degree.

 $6 - xy + 3x^2y^2 - 2x^3yz^2 + y^5$

Terms	Coefficients	Degree of Term	Leading Term	Degree of Polynomial

Add and Subtract Polynomials

Simplify: $(2x^2 - 3xy + y^2) + (-4x^2 - 6xy - y^2) + (4x^2 + xy - y^2)$

 $(a^3 + b^3) - (-5a^3 + 2a^2b - ab^2 + 3b^3)$

Multiply: $(5cd + c^2d + 6)(cd - d^2)$

Multiply: (m³n + 3)(2m³n - 11)

 $(4r + 3t)^2$

 $(p^3 - 5q) (p^3 + 5q)$

end

- Two ways to work division
- Recall the distributive property
- Divide a polynomial by a monomial
- Recall long division
- Divide a polynomial by a polynomial

The Distributive Property

Recall: Also: a(b + c) = ab + ac (b + c)a =_____ With a new twist: (b + c) = a =_____ $\frac{b + c}{a} =$ _____ $\frac{Polynomial}{mono} = \frac{A + B + C}{D} =$

Divide a Polynomial by a Mono

 $(5x^2 - 10) \div 5$ $\frac{8x^3 - 12x^2}{4x}$

Divide a Polynomial by a Mono

$$(9x^{3}y^{2}-12x^{2}y^{3}) \div (-9xy) \qquad \underline{21a^{3}z^{2}-14a^{2}z^{2}+7a^{2}z^{3}}{7a^{2}z}$$

24)8580

<u>Ste</u>	os for Division
1.	
2.	
3.	
4.	
5.	

Deciding on which way to DIVIDE

Next to each problem circle the correct way to divide it.

1.
$$(5x^2 - 16x) \div (5x - 1)$$

2. $(20t^3 + 5t^2 - 15t) \div (5t)$
3. $(36a^6 - 27a^5 - 45a^2 + 9a) \div (-9a)$
4. $\frac{x^4 - 3x^2 + 4x - 3}{x^2 - 5}$
5. $\frac{4x^4y - 8x^6y^2 + 12x^8y^6}{4x^4y}$
a) Fraction b) Long Division
a) Fraction b) Long Division
a) Fraction b) Long Division